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[1] In this paper, the atmospheric precipitable water (PW) was estimated by means of
Advanced Very High Resolution Radiometer (AVHRR) thermal channels brightness
temperature difference (DT), over the broader area of Greece. The AVHRR derived DT
was calculated in a grid of 5 � 5 km cells; the corresponding PW value in each grid cell
was extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2
product (near infrared algorithm). MODIS derived PW values were adjusted to the
AVHRR overpass time by using PW rates of change. These rates were estimated from time
series of radiosonde measurements, provided by four synoptic meteorological stations
located in Athens, Thessaloniki, Heraklion and Izmir. Next, to estimate the relationship
between adjusted PW and DT, a robust linear regression algorithm was applied. Since
regression coefficients corresponded to the broader area of Greece, the regression
relationship was applied to AVHRR data for the period 2001–2005, to predict the annual
and seasonal variability of PW over the study area. Radiosonde derived PW values at the
above synoptic stations were used to validate the AVHRR derived PW spatiotemporal
distribution. A very good agreement between radiosonde and AVHRR derived PW values
was observed since a RMSE of 0.46 cm was calculated using a validation data set that
covered a five years period.
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1. Introduction

[2] Water vapor is the principal contributor to the green-
house effect and plays a key role in our understanding of the
Earth’s climate. Precipitable water (PW) is the amount of
vertically integrated water vapor and can be expressed in
g/cm2, or as the height of an equivalent column of liquid
water in cm. Its spatiotemporal distribution is essential in
understanding the hydrological cycle, hence it has been
adopted as an input variable in climatological studies in
global, regional and local scales. PW can be used together
with generalized vertical humidity profiles to infer surface
dew point. Moreover, it has the potential to support hydro-
logical, biospheric and atmospheric modeling in local and
regional scales, since it is widely used in energy budget and
evapotranspiration studies. PW is of essential need in
atmospheric correction of high spatial resolution satellite
data. It is also necessary for the enhancement of the
precision of land surface temperature estimates obtained
from satellite data by means of split window algorithms, as

well as to correct Synthetic Aperture Radar (SAR) interfer-
ometric measurements, given that the atmospheric water
vapor is a major limitation for high precision Interferometric
SAR (InSAR) applications due to its significant impact on
microwave signals. The satellite derived high-resolution PW
retrievals can be useful in anticipating the distribution of
precipitation patterns and in tracking the seasonal and
annual variability of PW on regional scales. Thus they are
of particular importance for monitoring drought conditions
and desertification processes.
[3] PW can be obtained from vertical integration of

radiosonde measurements [Elliott and Gaffen, 1991; Gaffen et
al., 1992; Bony and Duvel, 1994; Cartalis and Chrysoulakis,
1997; Chrysoulakis and Cartalis, 2000; Chrysoulakis et al.,
2001]. Radiosonde reports are one of the primary tools for
measuring atmospheric water vapor; however, there are
some problems associated with their use as atmospheric
data. First, the temporal frequency of radiosonde reports
is generally limited to two launches per day. Secondly,
radiosonde instruments can typically only measure temper-
ature and relative humidity with a precision of about 0.2 K
and 3.5%, respectively, resulting errors in PW that range
between 5 and 10%. Nevertheless, radiosondes still repre-
sent the most accurate means for verifying water vapor
amounts [Motell et al., 2002].
[4] PW can also be obtained by analyzing the attenuation

that water vapor causes to the radiation signal recorded by a
remote sensing radiometer/sounder/radar, or a Global Posi-
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tioning System (GPS), or a Sun photometer. During the last
20 years, several remote sensing techniques used a variety of
spectral regions to estimate PW [Chesters et al., 1983;
Alishouse et al., 1990; Gao and Goetz, 1990; Frouin et al.,
1990; Smith, 1991; King et al., 1992, 2003; Kaufman and
Gao, 1992; Thome et al., 1992;Guillory et al., 1993; Eck and
Holben, 1994; Sobrino et al., 1994; Choudhury and Di
Girolamo, 1995; Uspensky and Scherbina, 1996; Knabb
and Fuelberg, 1997; Halthore et al., 1997; Ottlé et al.,
1997; Prince et al., 1998; Barton and Prata, 1999; Ottlé
and François, 1999; Hanssen et al., 2001; Pacione et al.,
2002; Chrysoulakis and Cartalis, 2002; Johnsen and
Kidder, 2002; Mallet et al., 2002; Gao and Kaufman,
2003; Li et al., 2003, 2006; Jade et al., 2005; Jiménez-
Muñoz and Sobrino, 2005; Walpersdorf et al., 2007;
Schroedter–Homscheidt et. al., 2007]. Especially for the
thermal infrared spectral region, it has been shown that PW
may be estimated from thermal infrared split window chan-
nels with an accuracy better than 0.5 cm [Ottlé et al., 1997].
[5] The retrieving of PW using Moderate Resolution

Imaging Spectroradiometer (MODIS) near infrared records
is based on detecting the water vapor absorption of the
reflected solar radiation after it has been transmitted down
to the surface, reflected at the surface, and transmitted up
through the atmosphere to the sensor. The equivalent total
vertical amount of water vapor is derived from a comparison
between the reflected solar radiation in the absorption
channel, and the reflected solar radiation in nearby non
absorption channels [Gao and Goetz, 1990; Frouin et al.,
1990; Kaufman and Gao, 1992; Thai and Schonermark,
1998; Gao and Kaufman, 2003]. Three near infrared chan-
nels located within the 0.94 mm water vapor band absorption
region were implemented on MODIS for water vapor sens-
ing. Techniques employing ratios of water vapor absorbing
channels centered near 0.905, 0.936, and 0.940 mm with
atmospheric window channels at 0.865 and 1.24 mmare used.
PW is estimated over areas that have reflective surfaces in the
near infrared, such as clear land areas, clouds, and oceanic
areas with sun glint [King et al., 2003]. Typical errors for
MODIS derived PW over land range between 5% and 10%
[Gao and Kaufman, 2003]. The sources of errors for PW
retrievals from near infrared channels include uncertainties in
the spectral reflectance of the surface, sensor radiometric and
spectral calibrations, pixel registration between several chan-
nels, atmospheric temperature and moisture profiles, and the
amount of haze [Kaufman and Gao, 1992; Bouffies et al.,
1997].
[6] A number of algorithms have been proposed to

derive PW from Advanced Very High Resolution Radi-
ometer (AVHRR) thermal infrared observations [Dalu,
1986; Jedlovec, 1990; Kleespies and McMillin, 1990;
Goward et al., 1994; Prince and Goward, 1995; Andersen,
1996; Roger and Vermote, 1998]. These methods can be
classified into four main categories: The simple split-
window of thermal channels [Dalu, 1986], the variance
ratio [Jedlovec, 1990], the regression slope [Goward et al.,
1994], the covariance-variance method [Harris and Mason,
1992] and the look-up table approach [Czajkowski et al.,
2002]. The impact of satellite viewing angle in PW estimation
has been discussed by Dalu [1986], Sobrino et al. [1994],
Choudhury et al. [1995],Ottlé et al. [1997],Prince et al. [1998]
andMotell et al. [2002]. It should be noted that emissivity over

land surfaces presents a significant complication in interpreting
split window temperature differences, however accuracies of
better than 0.5 cmwater can be achieved [Dalu, 1986; Justice et
al., 1991; Eck and Holben, 1994].
[7] Let T4 and T5 denote the brightness temperatures of

AVHRR channels 4 and 5, respectively. Analysis of the split
window temperature differences DT = T4 � T5, for land
surfaces in several different climatic regions with differing
soil compositions and vegetative covers, revealed a linear
relationship between DT and PW [Eck and Holben, 1994;
Choudhury et al., 1995]. The accuracy of the split window
technique is uncertain in arid environment during daytime
due to strong near-surface air temperature gradient
[Choudhury and Di Girolamo, 1995]. Provided that the
channels 4 and 5 radiances are accurately calibrated
[Goodrum et al., 2001], the AVHRR split window tech-
nique of PW estimation has the potential to provide
consistent estimates of PW for a multiyear database. This
technique can be referenced to a given year of independent
(satellite, radiosonde, Sun photometer, GPS etc.) data or
analyzed PW fields and thus provide consistent multiyear
estimates for each location. As discussed by Choudhury et
al. [1995], spatial and temporal changes of DT and PW
can also be associated with the changes of land surface
characteristics and hence the emissivity. The high correla-
tions found by Eck and Holben [1994] suggest that the
spatial variation of emissivity, associated with significant
changes of surface characteristics, can have a higher
impact on the PW-DT relationship than temporal varia-
tions at a specific location.
[8] In this paper the MODIS precipitable water Level-2

product is related to the AVHRR derived DT after an
adjustment that takes into account the time lag between
the time of the two satellite passes. The adjustment used
radiosonde derived PW rates of change collected at four
synoptic meteorological stations (Athens, Thessaloniki,
Heraklion and Izmir). All spatial calculations were per-
formed in a grid of 5 � 5 km cells over the study area.
Preliminary data investigation revealed a linear relationship
between adjusted PW and DT; to eliminate the effect of
outlying measurements, the parameters that characterize this
relationship were estimated via a robust regression proce-
dure. The PW–DT relationship was applied to AVHRR
data to provide multiyear PW spatial distributions and was
validated against radiosonde derived PW time series at the
abovementioned synoptic stations. AVHRR data acquired
during the mid month of each season (January, April, July,
and October) for the time period 2001–2005 were used,
therefore the seasonal variability of PW was also assessed.

2. Study Area and Data Sets

2.1. The Study Area

[9] The study area is the broader area of Greece. In
Figure 1, the location of the four radiosonde stations
(Athens, Thessaloniki, Heraklion and Izmir) is highlighted
in the study area and a grid comprised by 5 � 5 km cells is
superimposed. The PW–DT relationship was calibrated
at 5 � 5 km cell level; for this reason the 1 � 1 km AVHRR
and MODIS derived data were spatially aggregated in 5 �
5 km cells. In particular, DTwas estimated at AVHRR pixel
level and the mean value in each grid cell was computed.
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[10] As it will be explained later, near nadir AVHRR
acquisitions over the study area were used, therefore the
effect of satellite zenith angle was ignored. Likewise the
PW values extracted at 1 � 1 km level from the MODIS
Level 2 product were aggregated in 5 � 5 km cells. To
calibrate the PW–DT relationship, 15 MODIS and AVHRR
acquisitions were used.
[11] Table 1 displays the respective dates and overpass

times of both Tearra/MODIS and NOAA16/AVHRR. More-
over, Table 1 presents observations of the meteorological
horizontal visibility at 0.55 mm at the above synoptic
stations. These observations are part of the global synoptic
weather reports received via the Global Telecommunication
System (GTS) at the European Center for Medium range
Weather Forecast (ECMWF). As depicted in the table,
visibility values are grater than 10 km in all cases. Therefore
it was considered that the atmospheric aerosol content was
low and thus the effect of aerosols in thermal infrared
radiation absorption was ignored.

2.2. The MODIS Data

[12] The MODIS radiometer has 36 channels that cover
the spectral region between 0.4 and 15 mm. Five near
infrared channels centered at 0.865, 0.905, 0.936, 0.940,
and 1.240 are used for PW sensing. The channels at 0.865
and 1.24 mm positioned to avoid atmospheric gaseous
absorption are used for remote sensing of vegetation and
clouds. The channels at 0.936, 0.940, and 0.905 mm are
water vapor absorption channels with decreasing absorption
coefficients. The strong absorption channel at 0.936 mm is
most useful for dry conditions, while the weak absorption

channel at 0.905 mm is most useful for very humid con-
ditions, or low solar elevation [Gao and Kaufman, 2003].
[13] The MODIS Level 2 precipitable water product con-

sists of column water vapor amounts. The results of the near
infrared retrieval algorithm over land were used in this study;
this algorithm [Gao and Kaufman, 2003] is applied over clear
land areas of the globe and above clouds over both land and
ocean during daytime. Over clear ocean areas, water vapor
estimates are provided over the extended glint area. The
Level 2 data are generated at the 1-km spatial resolution of
MODIS using the near-infrared algorithm during the day. For
this work, the Terra/MODIS PW retrievals for the study area
for 15 days of October 2003, January, April and July 2004
(Table 1) were selected; the selection criteria are explained in
section 3.1. These Terra data (collection 5) were available
from the Level 1 and Atmosphere Archive and Distribution
System [LAADS, 2007].

2.3. The AVHRR Data

[14] Records of AVHRR onboard NOAA 16 acquired
over the study area for the five year period 2001–2005 (for
the months January, April, July and October) were used to
derive the spatiotemporal distribution of PW. The AVHRR
is a five channel instrument, with three of the spectral
channels located in the visible, near-infrared and mid
infrared regions of the spectrum, while the remaining two
are located in the thermal infrared with effective wave-
lengths centered around 10.8 mm (channel 4), and 12 mm
(channel 5). It has the same spatial characteristics with
previous versions of AVHRR; spatial resolution of 1.1 km
at nadir and swath coverage of 2700 km. For the present

Figure 1. The study area. The MODIS derived PW and the AVHRR derived DT were spatially
averaged in 5 � 5 km. For this reason a grid of 5 � 5 km cells was developed (Projection: Geographic-
WGS 84). For each of the 15 data sets shown in Table 1, only cloud free cells over land were used. The
location of Athens (1), Thessaloniki (2), Heraklion (3) and Izmir (4) meteorological stations is shown.
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study, the AVHRR data were available from both NOAA
Satellite Active Archive [CLASS, 2005] and the HRPT
ground receiving station of FORTH (Foundation for Re-
search and Technology-Hellas). For the PW-DT relationship
calibration, data corresponding to the 15 days presented in
Table 1 were used.

2.4. The Radiosonde Data

[15] Upper air data is reported up to four times per day at
the synoptic hours of 00:00, 06:00, 12:00 and 18:00 UTC.
The frequency varies widely between countries and stations.
Standard practice states that all measurements in the profile
are attributed to the nominal hour of the ascent: this is the
time the radiosonde reaches 100 hPa. It takes approximately
an hour for the balloon to rise to this level, hence the
radiosondes are released one hour before the synoptic times.
The radiosonde takes measurements at intervals of approx-
imately 2 s; high resolution data files contain all such data.
The standard resolution data files contain measurements
taken at particular levels of the atmosphere.
[16] Radiosonde data consist of height profiles for pressure,

temperature and dew point. Radiosondes are expected to
produce PW with an uncertainty of 0.1–0.2 cm, which is
considered to be the accuracy standard of PW for meteoro-
logical applications [Met Office, 2006]. Radiosonde mea-
surements at four synoptic stations were used in this study:
Athens (37.90 N, 23.73 E), Thessaloniki (40.52 N, 22.97 E),
Heraklion (35.33 N, 25.18 E) and Izmir (38.43 N, 27.17 E).
The data (daily pressure, temperature and humidity measure-
ments at several levels of radiosonde rising for 00.00 and
12.00 UTC) for the study period (2001–2005) were obtained
from the UK Meteorological Office. The accuracy of radio-
sonde measurements is ±0.5 hPa for pressure, ±0.2 K for
temperature and ±2 % for relative humidity [Met Office,
2006].

3. Methodology

3.1. Overview

[17] Theoretical analysis proposes an almost linear rela-
tionship between PW and DT, with slope and intercept

being determined by the surface emissivity. Spectral varia-
tion of emissivity is found to be the major factor that causes
deviation of the intercept from a nearly zero value
[Choudhury et al., 1995]. Assuming that the surface is
Lambertian, the land-atmosphere system is spatially homo-
geneous, and a first-order Taylor’s series expansion of the
Planck’s function is a good approximation, a split window
algorithm can be applied to AVHRR thermal infrared
channels [Choudhury and Di Girolamo, 1995]. As it has
been shown in past studies [Dalu, 1986; Justice et al., 1991;
Eck and Holben, 1994; Choudhury and Di Girolamo, 1995;
Czajkowski et al., 2002], if the radiative transfer equation is
linearized, the PW is proportional to the difference between
the two AVHRR thermal channels brightness temperature.
[18] The linearity of the PW–DT relationship was tested

using a radiative transfer model for different ground emis-
sivities. The Santa Barbara DISORTAtmospheric Radiative
Transfer (SBDART) model [Ricchiazzi et al., 1998] was
used. SBDART was run for representative latitude and
longitude for the study area (38� N, 23.5� E), for a time
around the NOAA 16 pass (13:00 UTC), using several land
cover types (emissivities) such as Water, Vegetation, Brown
Sandy Loam, White Gypsoum Dune Sand and Urban
Asphalt, for different troposphere aerosols load (zero aero-
sol, aerosol optical depth equal to 1 and 3). The longwave
radiation recorder by AVHRR channel 4 and 5 was simu-
lated by SBDART for PW values from 0.5 to 2.5, which
combined with the aforementioned land cover types and
aerosol loadings provided several scenarios for SBDART
runs. DT was calculated for each case as the difference of
the simulated temperature in AVHRR channels 4 and 5. The
temperature in each of these channels was derived from the
simulated by SBDART radiance using the Planck equation
for blackbody. The calculations based on SBDART simu-
lations are shown in Table 2. The linearity of PW –DT
relationship is evident in Figure 2, where PW versus DT
scatterplots based on SBDART simulations are presented:
(a) PW–DT scatterplot for 5 land cover types for aerosol
free atmosphere; (b) and (c) PW–DT scatterplots for 5 land
cover types for tropospheric aerosol with aerosol optical

Table 1. Dates and Overpass Times of Tearra/MODIS and NOAA16/AVHRR Acquisitions Used in This Studya

Date
Terra/MODIS

Pass Time, UTC
NOAA16/AVHRR
Pass Time, UTC

Pass Time
Difference

Meteorological Horizontal
Visibility (0.55 mm) at 12:00 UTC, km

Athens Thessaloniki Heraklion Izmir

2 Oct 2003 09:30 13:00 3:30 10 15 15 15
4 Oct 2003 09:20 12:35 3:15 10 10 20 15
12 Oct 2003 08:30 12:45 4:15 20 10 15 15
22Oct 2003 09:05 12:35 3:30 10 10 25 15
7 Jan 2004 08:35 12:05 3:30 15 10 15 15
17 Jan 2004 09:15 11:55 3:40 15 20 20 15
25 Jan 2004 10:00 12:05 2:05 15 10 15 15
6 Apr 2004 09:15 12:50 3:35 10 10 20 15
16 Apr 2004 09:50 12:35 2:45 15 10 20 15
23 Apr 2004 09:10 12:55 3:45 15 10 15 15
29 Apr 2004 09:20 13:30 4:10 12 10 20 15
1 Jul 2004 09:25 13:15 3:50 15 15 20 15
7 Jul 2004 09:35 13:50 4:15 15 10 20 15
8 Jul 2004 08:40 13:35 4:55 15 20 15 15
9 Jul 2004 09:25 13:25 4:00 15 15 20 15

aThe pass time difference (Dt) is also presented, as well as the observations of the meteorological horizontal visibility at 0.55 mm at four representative
meteorological stations: Athens, Thessaloniki, Heraklion and Izmir (Figure 1). Its values are grater than 10 km in all cases, therefore we can consider that
the atmospheric aerosol content is low and thus the effect of aerosols in thermal infrared radiation absorption can be ignored.
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depths t = 1 and t = 3, respectively; (d) linear fittings using
all land cover types for each aerosol case separately.
[19] This split-window technique is not a universal

solution to PW retrieval due to the dependence of the
difference DT on air temperature and surface character-
istics. Linear relationships characterized by different coef-
ficients are expected to hold in different locations. The
coefficients of the linear relationship between PW and DT
are site specific and can be derived as an output from a
radiative transfer model, or as observational data at each
location. In this study, MODIS derived PW were used as
an independent data set, adjusted for the time lag between
the time of Terra/MODIS and NOAA16/AVHRR over-
passes. Radiosonde data were used for this adjustment as it
is described in section 3.5. More specifically, if the
AVHRR acquisition over the study area is performed at
t = t0, the PW at this time, PW(t0), can be estimated as
linear function of DT:

PW x; y; t0ð Þ ¼ aDT x; y; t0ð Þ þ b ð1Þ

where,

PW(x, y, t0) is the total column precipitable water in
the (x, y) cell of the grid at AVHRR
acquisition time (t0),

x, y are the coordinates of the center of the cell,
a and b are coefficients that need to be estimated

for the study area,

DT = T4 � T5 is the brightness temperatures for chan-
nels 4 and 5 in the (x, y) cell. The data for
AVHRR channels 4 and 5 are given in
digital numbers (Level 1b format), which
are converted to radiance at the sensor
and finally to brightness temperatures to
the allowable accuracy of 0.5 K [Goodrum
et al., 2001].

[24] It is noted that the uncertainty in inferring PW from
radiosonde is around 5% [Eck and Holben, 1994]. However,
the uncertainty in estimating PW using AVHRR records for
the time of MODIS overpass is probably larger due to
temporal variations in PW amount. By a Taylor’s series
expansion of PW about the time t0 we obtain:

PW x; y; tð Þ ¼ PW x; y; t0ð Þ þDt
@PW x; y; t0ð Þ

@t
ð2Þ

where,

PW(x, y, t) is the PW in the (x, y) cell at MODIS
acquisition time (t),

x, y are the coordinates of the center of the cell,
PW(x, y, t0) is the PW value at the same location at the

AVHRR acquisition time,
Dt = t � t0 is the time difference between MODIS and

AVHRR passes,

[29]
@PW x;y;t0ð Þ

@t is the partial derivative of PW with respect

to time at the (x, y) location, being evaluated at t = t0. It
represents the rate of change of PW in a grid cell with
coordinates x and y.
[30] Therefore the MODIS derived PW can be related to

the AVHRR derived DT as:

PW x; y; tð Þ �Dt
@PW x; y; t0ð Þ

@t
¼ aDT x; y; t0ð Þ þ b ð3Þ

[31] The term PW(x, y, t) � Dt
@PW x;y;t0ð Þ

@t represents an
estimation of the actual precipitable water during the
AVHRR acquisition time called the adjusted precipitable
water (PW*). PW* was computed by combining MODIS
derived PW with radiosonde derived PW rates of change
over the study area. The latter was derived by spatial
interpolation using the PW rates of change calculated at
the synoptic stations of Athens, Thessaloniki, Heraklion and
Izmir. Consequently, for a grid cell with coordinates x and y,
the equation (3) can be written as:

PW* x; y; t0ð Þ ¼ aDT x; y; t0ð Þ þ b ð4Þ

[32] The coefficients a and b in (4) can be estimated by
linear regressions of PW*versusDT. In this study, the
estimation of the coefficients a and b was based on MODIS,
AVHRR and radiosonde data acquired during the selected
days of 2003 and 2004 (Table 1). The selection criteria for
these days were: a) As much cloud free land area as possible
and b) near nadir NOAA16/AVHRR acquisitions over the
study area. We performed a selection of cloud free (in both

Table 2. DT for Different Combinations of PW, Aerosol Loads

and Land Cover (Emissivity) Types as Resulted From SBDART

Simulations

Land
Cover

PW,
cm

DT, K

No
Aerosols

Tropospheric
Aerosols t = 1

Tropospheric
Aerosols t = 3

Vegetation 0.5 1.147 1.0878 0.5159
1 1.6238 1.5699 0.8991
1.5 2.0913 2.0445 1.3191
2 2.5386 2.496 1.7717
2.5 2.9486 2.981 2.6358

Water 0.5 1.147 1.0878 0.5159
1 1.6239 1.5699 0.8991
1.5 2.0913 2.0445 1.3191
2 2.5385 2.496 1.7716
2.5 2.9486 2.981 2.6358

Brown Sandy
Loam

0.5 0.8043 0.7673 0.3503
1 1.2247 1.1939 0.6815
1.5 1.6652 1.6377 1.064
2 2.1148 2.0905 1.4975
2.5 2.5523 2.5948 2.3507

White Gypsum
Dune Sand

0.5 0.8702 0.8272 0.3808
1 1.3046 1.2678 0.7229
1.5 1.7531 1.7196 1.115
2 2.2026 2.1744 1.5528
2.5 2.6367 2.6752 2.4103

Urban Asphalt 0.5 0.6734 0.6398 0.257
1 1.1056 1.0731 0.5895
1.5 1.5566 1.528 0.9837
2 2.0224 1.997 1.4286
2.5 2.4746 2.5216 2.2929
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MODIS and AVHRR images) cells corresponded to land
aiming to have as much cells of the same location as
possible (at least for the same month).
[33] As shown in Table 1, the aerosol concentration was

low, since meteorological horizontal visibilities greater than
10 km are observed in all cases. Moreover, the values of
horizontal visibilities in Table 1, suggested that there was no
Saharan dust episode, thus it was assumed that the aerosol
haze was composed predominately of small size particles
relative to the long wavelength thermal infrared channels of
AVHRR, having a small effect in observed radiances
[Choudhury et al., 1995].
[34] The estimated PW*–DT relationship was applied to

AVHRR data to provide PW spatial distributions for the
period 2001–2005 (for January, April, July, and October)
and it was validated using radiosonde derived PW time
series at the synoptic stations of Athens, Thessaloniki,

Heraklion and Izmir. A very good agreement was observed
as it is described in section 3.7.

3.2. Radiosonde Derived Precipitable Water

[35] The radiosonde measurements (pressure, temperature
and dew point temperature) were used to estimate the rate of
change of PW, which was necessary for the calibration
procedure. These measurements also provided a set of time
series that was used as an independent data set for valida-
tion. The PW was estimated using the approach described
by Cartalis and Chrysoulakis [1997] and by Chrysoulakis
and Cartalis [2000]: The atmospheric column was divided
in several layers (according to the radiosonde sampling rate)
and PW was estimated by summing the water vapor mixing
ratio in each atmospheric layer multiplied by the depth
(pressure difference between top and bottom) of the layer.
The water vapor mixing ratio was estimated as a function of

Figure 2. PW versus DT scatterplots based on SBDART simulations (Table 2): (a) PW–DT scatterplot
for 5 land cover types for aerosol free atmosphere; (b) and (c) PW–DT scatterplots for 5 land cover types
for tropospheric aerosol with aerosol optical depths t = 1 and t = 3, respectively. The linear PW–DT
relationship and the effect of emissivity on intercept is evident in all cases. (d) Linear fittings using all
land cover types for each aerosol case separately. The linear PW–DT relationship is evident from the
high R2 values. The effect of atmospheric aerosol on both slope and intercept is also evident.
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the moist air density which in turn was estimated using the
relative humidity and the saturation water vapor pressure
values. The relative humidity was calculated using the
radiosonde derived temperature and dew point temperature
measurements [Iribarne and Godson, 1981]. Finally, the
saturation water vapor pressure in each layer was calculated
from the radiosonde temperature measurements using the
Magnus’ formula [Iribarne and Godson, 1981].
[36] It should be noted that temperature and/or dew point

temperature measurements at some heights were missing.
Both temperature and dew point temperature were consid-
ered functions of pressure. To fill missing values, a linear
interpolation method was applied separately for each radio-
sonde (00:00 UTC or 12:00 UTC) at each synoptic station.
Radiosondes with more than 50% missing values (especially
in lower atmospheric layers) were not included in the
analysis. Finally, the radiosonde derived PW values were
filtered to remove outliers, which resulted either due to
missing temperature or humidity values at specific heights,
or due to interpolation or extrapolation errors.

3.3. MODIS Derived Precipitable Water

[37] As noted before, MODIS PW retrievals for October
2003, January, April, and July 2004 were used [LAADS,
2007]. The data were available as images (PW scenes from
collection 5) in Hierarchical Data Format (HDF). A Matlab
script was developed to read the HDF files, to extract the

PW values for each pixel and to assign a flag value to all the
cloudy pixels of each PW scene. The original HDF files
were modified using the Software Library and Utilities for
National Center for Supercomputing Applications (NCSA)
HDF, through Matlab’s user interface [NCSA, 2003]. A
scale factor was included to convert the scaled integer
values to PW values (cm); integer values were scaled using
the scale factor included in each HDF file.
[38] Information about cloud cover was included in HDF

format. A cloud mask in bit-level representation provided
criteria that guide one to decide if a pixel of the PW scene
was cloudy or not. A pixel can be classified as cloudy, 66%
probably clear, 95% probably clear and 99% probably clear.
In this study, pixels that considered being less than 5%
cloudy were used.
[39] Navigation parameters were also included in HDF

format; these parameters were used to correct the panoramic
distortion and to project each PW scene in a common
projection system (Geographic with WGS84 ellipsoid and
datum). The nearest neighbor resampling method was used
to geometrically correct the PW scenes. Consequently, the
MODIS derived PW was transformed to geometrically
corrected scenes at 1 km spatial resolution. Real PW values
were assigned to non cloudy pixels whereas the cloudy
pixels were masked. Finally, all scenes were spatially
averaged to the 5 � 5 km cell grid covering the study area.
It should be noted that the spatial averaging was performed

Figure 3. Monthly mean PW values as calculated using 00:00 UTC and 12:00 UTC radiosonde
measurements at synoptic stations of Athens (37.90 N, 23.73 E), Thessaloniki (40.52 N, 22.97 E),
Heraklion (35.33 N, 25.18 E) and Izmir (38.43 N, 27.17 E). The interanually variability of the
atmospheric humidity is evident in all cases (00:00 UTC measurements for Thessaloniki for 2001–2002,
12:00 UTC measurements for Heraklion for 2001–2002, as well as some 00:00 UTC and 12:00 UTC
values for Izmir, for 2004 and 2005 are missing).
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if all pixels corresponding to each grid cell were non-
cloudy. If one or more cloudy pixels were included, a flag
value was assigned to the respective cell.

3.4. AVHRR Derived Brightness Temperature
Difference

[40] Standard pre-processing steps were employed to
convert the raw AVHRR records to calibrated values. The
calibration procedure was based on the conversion of digital
numbers of each image to radiance at the sensor values for
visible and near infrared channels (channels 1 and 2) and to
brightness temperature values for the thermal infrared
channels (channels 3, 4 and 5) with the use of the non-
linear conversion equations given in the NOAA KLM Polar
Orbiter Data Users Guide [Goodrum et al., 2001]. The
intercept and gain for each AVHRR channel, as well as the
parameters related to the central wave number and the con-
stants needed to parameterize the calibration equations were
extracted from the NOAA Level 1b header of each image
file. The platform flight altitude was also extracted from the
same source and it was used for the geometric correction and
the correction of the panoramic distortion in calibrated
AVHRR images. The geometric correction was fine-tuned
manually using a limited number of Ground Control Points
(GCPs). The standard NOAA projection system (Geographic
with ellipsoid and datum WGS 72) was used. The selection
of GCPs was rather easy due to the high land–sea contrast
over the Aegean Sea, where several small islands exist. The

images were finally reprojected to the standard MODIS
projection system in order to have all the data sets in the
same system. The nearest neighborhood resampling method
was used in all cases.
[41] To derive the spatial distribution of DT at 5 � 5 km

level for the mid month of each season of the study period
with accuracy, a cloud mask filter proposed by Chrysoulakis
and Cartalis [2003] was used to detect cloudy pixels.
Accordingly, DT was calculated at AVHRR pixel level
(1.1 km) for non cloudy pixels. DT values were spatially
averaged at the 5 � 5 km level assigning a mean DT value
in each grid cell. As for the MODIS data, spatial averaging
was performed if all pixels corresponding to each grid cell
were non cloudy. The above steps were repeated for almost
all days (one near nadir acquisition of NOAA 16 per day) of
the months January, April, July and October of the time
period 2001–2005. Days with unsuccessful acquisitions
over the study area were not included in the analysis.

3.5. Estimation of the Rate of Change
of Precipitable Water

[42] The term
@PW x;y;t0ð Þ

@t in equation (3) was estimated
using radiosonde derived PW time series at the synoptic
stations of Athens, Thessaloniki, Heraklion and Izmir.
Radiosonde derived PW values measured before (usually
at 00:00 UTC) and after (usually at 12:00 UTC) the MODIS
acquisition were used to calculate the rate of change of PW
at the locations of these synoptic stations. These values

Figure 4. Daily PW values calculated using the 12:00 UTC radiosonde measurements at Athens
synoptic station (37.90 N, 23.73 E) for the 5-year period 2001–2005. A moving average (with 1 month
period) has been superimposed (bold curve), which reveals the interannual variability of PW.

D05101 CHRYSOULAKIS ET AL.: PRECIPITABLE WATER SPATIAL DISTRIBUTION

8 of 18

D05101



were pre-processed and outliers, which resulted either due
to missing temperature or humidity values at specific
heights or due to interpolation or extrapolation errors, were
removed.
[43] Next, to estimate the spatial distribution of the

approximate
@PW x;y;t0ð Þ

@t term, an inverse (squared) distance
weighting scheme over the study area was employed, based
on PW values obtained at the four synoptic stations. The
output grid cell size was again set equal to 5 � 5 km.
Application of a spatial interpolation method to data from
four sites may seem a crude approximation of the spatial
dynamics of the rate of change of PW. However, our data
suggested that these rates did not display large spatial
variability, therefore the approximation error was expected
to be small. It should be noted that given the low spatial
resolution the radiosonde data, this simple interpolation
scheme seems the most adequate for this study.

[44] As a result a
@PW x;y;t0ð Þ

@t value was calculated in each
cell, corresponding to a PW(x, y, t) value. Finally the
parameter PW*(x, y, t0) was calculated for each grid cell.
The spatial distribution of PW* over the study area and the
respective spatial distribution of AVHRR derived DT were

afterward used to estimate the coefficients a and b in
equation (4) by means of robust regression analysis.

3.6. Robust Regression Analysis

[45] The unknown parameters in equation (4) were esti-
mated via a robust regression procedure. The main purpose
of robust regression is to detect outliers and provide
resistant (stable) estimates for the coefficients of a linear
relationship. Historically, three classes of problems have
been addressed with robust regression techniques: Problems
with outliers in the y-direction (which in our case means
extreme values for PW*); problems with outliers in the
x-space, also referred to as leverage points (which in our
case means extreme values for DT) and problems with
outliers in both directions. As explained in section 4, in this
work, all the abovementioned cases were encountered.
[46] Outliers were identified via Least Trimmed Squares

(LTS) estimation of the regression coefficients. LTS is a
high breakdown value method introduced by Rousseeuw
[1984]. Roughly speaking, the breakdown value is a mea-
sure for the proportion of contamination that an estimation
method can withstand and still maintain its robustness. LTS
regression is based on a subset of observations whose least

Figure 5. Monthly mean values of PW (cm) over the study area in a 5 � 5 km cell grid. Monthly means
were calculated on the basis of MODIS Level 2 precipitable water product, therefore they are
representative for the morning case (around the time of Terra pass over the study area): (a) October 2003;
(b) January 2004; (c) April 2004 and (d) July 2004. The maximum values of the spatial distribution of the
mean PW are 2.33, 0.98, 1.48 and 3.86 cm, respectively.
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squares fit possesses the smallest sum of squared residuals.
The performance of this method was improved by the
FAST-LTS algorithm of Rousseeuw and Van Driessen
[2000]; since our model contains a single regressor we
applied the exact algorithm of Rousseeuw and Leroy [1987].
[47] Outlier diagnostics were based on the residuals of the

LTS regression. In particular, leverage points were identi-
fied using the Mahalanobis and robust minimum covariance
determinant (MCD) distances, and outliers were identified
from the values of standardized robust residuals. A pair of
PW*-DT values was characterized as a leverage point, or an
outlier, if the corresponding distances exceed some prede-
fined cutoff values (see Hubert et al. [2005], for further
details). The last stage of the robust regression procedure
computed the final weighted least squares estimates, which
were least squares estimates computed after deleting the
detected outliers.

3.7. Application and Validation

[48] The PW*-DT relationship was applied to produce
PW spatial distributions over the study area using AVHRR

thermal infrared measurements. As previously noted, DT
was estimated for cloud free pixels of geometrically cor-
rected scenes acquired over the study area for the period
2001 to 2005. Daytime acquisitions of NOAA 16 for each
day of the mid month of each season (January, April, July,
and October) were used. Hence the spatiotemporal distri-
bution of PW on the basis of equation (4) was produced.
Moreover, to examine interannual and spatial variability,
seasonal means for the study period (2001–2005) were
calculated using the time series of the spatial distribution of
PW for January, April, July and October.
[49] To validate our PW estimates, radiosonde derived

PW values at Athens, Thessaloniki, Heraklion and Izmir
synoptic stations were used. It was assumed that the
radiosonde measurements at each synoptic station were
representative for the 5 � 5 km cell in which the station
was included. Therefore the radiosonde derived PW
corresponding to the station location, was assigned to the
respective grid cell. In this way, the radiosonde derived PW
and the AVHRR derived PW can be compared at cell level.

Figure 6. Monthly mean values of DT (K) over the study area in a 5 � 5 km cell grid. Monthly means
were calculated on the basis of NOAA 16 AVHRR thermal infrared records, therefore they are
representative for the morning–mid day case (around the time of NOAA16 pass over the study area):
(a) October 2003; (b) January 2004; (c) April 2004 and (d) July 2004. The maximum values of the spatial
distribution of the mean DT are 3.62, 3.97, 4.78 and 4.59 K, respectively.
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[50] To measure how close PW estimates were to the
observed radiosonde values, the Root Mean Square Error
(RMSE) was calculated for the cloud free cells corre-
sponded to the locations of the above synoptic stations.
Validation was performed for days with no missing radio-
sonde measurements (at 12:00 UTC) for each of the months
January (153 pairs), April (185 pairs), July (272 pairs) and
October (221 pairs) of the time period 2001–2005, as well
as for the whole data set (831 pairs). Moreover, to visualize
biases in estimation, scatterplot diagrams of the estimated
versus the observed values were used.

4. Results and Discussion

[51] Monthly means of radiosonde-derived PW measure-
ments for 00:00 UTC and 12:00 UTC at Athens, Thessalo-
niki, Heraklion and Izmir synoptic stations, clearly reveal
the interannual variability of atmospheric humidity as
shown in Figure 3. This phenomenon is also displayed in
Figure 4, which presents an example of daily PW time
series as calculated using the 12:00 UTC radiosonde meas-
urements of Athens synoptic station for the period 2001–
2005. A moving average has been superimposed (bold

curve), which makes the summer maxima and the winter
minima of PW evident.
[52] The analysis of MODIS Level 2 PW product was

performed for October 2003, January, April and July of
2004. The spatial distribution of PW, as derived by daily
MODIS observations over the study area, was estimated at
5 � 5 km cell level. Figure 5 displays the spatial
distribution of MODIS-derived PW at 5 � 5 km level;
mean values for the mid month of each season are
presented. PW values over land were used, given that in
this case the MODIS near infrared PW retrievals were
reliable. The effect of topography is evident: lower PW
values are observed over the west part of central and
northern Greece (Pindos mountain chain), over the moun-
tainous area of central Peloponnese, over the three main
mountain chains of the Crete island, as well as over the
mountainous areas of Turkey, Albania, Bulgaria and For-
mer Yugoslavian Republic of Macedonia, for all seasons.
Moreover the summer maxima and the winter minima of
the PW distribution are depicted: mean PW maxima of
2.33, 0.98, 1.48 and 3.86 cm, correspond to October,
January, April and July, respectively.

Figure 7.
@PW x;y;t0ð Þ

@t spatial distribution for October 12, 2003 at 12:45 UTC, as derived by spatial
interpolation using the

@PW t0ð Þ
@t values at Athens, Thessaloniki, Heraklion and Izmir stations, which were

estimated from radiosonde data.
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[53] Figure 6 displays the spatial distribution of AVHRR-
derived DT for the same months. DT maxima for October,
January, April, and July, are recorded as 3.62, 3.97, 4.78 and
4.59 K, respectively. A correspondence of monthly mean
PW and DT spatial patterns is observed for all cases of
Figures 4 and 5.
[54] The absolute maximum

@PW x;y;t0ð Þ
@t values over the

study area found to range from 0.035 to 0.330 cm/hour

for the 15 days of Table 1. Figure 7 shows the spatial

distribution of the estimated
@PW x;y;t0ð Þ

@t term, for October 12,
2003 at 12:45 UTC as an example. One may observe the
effect of the inverse (squared) distance-weighting scheme
in estimated rates. Maximum PW rates of change of
0.05 cm/hour are observed for this case.
[55] A standard OLS analysis for the estimation of the

unknown coefficients in equation (4), revealed the presence
of only 4 outliers, among the 29861 PW*-DT pairs
contained in the data set of this study. However, a robust
LTS analysis revealed that 0.77% of the PW*-DT pairs
classified as outliers according to their robust standardized
residuals and 0.14% of the pairs classified as leverage points
according to their Mahalanobis and Robust MCD distances.
Table 3 indicates a substantial improvement in the fit of the
final weighted least squares estimates, that is the estimates
that emerged after LTS identified residuals were removed
from the data set. Indeed, the corresponding values for the
goodness of fit statistics were RFWLS

2 = 0.823 and RLS
2 =

0.731 for the FWLS and LS regression, respectively. Out-
lying values had also some impact on the magnitude of the
estimates. This impact was not dramatic though, given the
proportion and magnitude of outliers. A scatterplot of
the PW*-DT pairs together with the FWLS and LTS
regression lines is presented in Figure 8.
[56] The spatial distribution of the AVHRR derived mean

PW for the months January, April, July and October of the

Figure 8. A scatterplot of PW* versusDT that depicts the Robust Least Trimmed Squares and the Final
Weighted Least Squares Regression lines.

Table 3. Final Weighted Least Squares Estimates for the

Coefficients of Equation (4)a

FWLS Coeff. S.E. Chi-square P-value

Const. 0.362 (0.309) 0.005 4418 <0.0001
DT 0.719 (0.742) 0.002 8913 <0.0001

R2: 0.823

LS Coeff. S.E. t-value P-value

Const. 0.371 (0.369) 0.006 65.07 <0.0001
DT 0.716 (0.717) 0.003 285.03 <0.0001

R2: 0.731

aThe coefficients are estimated after the removal of outliers and leverage
points which are identified after fitting a least trimmed squares robust
regression on the PW*-DT pairs. OLS estimates are presented as well. Chi-
square and t statistics together with the corresponding p-values indicate that
all estimates are statistically significant. Note: LTS estimates are presented
in parentheses under the corresponding FWLS estimates; LS estimates after
the removal of the 4 outliers identified from LS residuals are presented in
parentheses under the corresponding LS estimates.
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period 2001–2005 is shown in Figure 9, where the PW
interannual and spatial variability can be observed. The
summer maxima and the winter minima are evident in each
cell and the effect of topography is shown as well. Mean
PW maxima of 1.60, 2.61, 3.96, and 2.50 cm are observed
for January, April, July, and October, respectively.
[57] However, of particular importance are the local

maxima, which can be observed over Thessaly, Central
Macedonia, East Thrace, West Albania and several less
extended parts of the West Greece and Turkey, especially
in the summer. All these areas are almost flat areas with
high percentage of arable land. Irrigated cultivation patterns
can be found in most of these areas. Irrigation favors
evapotranspiration, it therefore contributes to the increase
of the atmospheric humidity amounts during the growing
season, as well as during the summer. Finally, it is well
known that atmospheric humidity (and thus PW) increases
with air temperature. The spatial patterns of air temperature
over the study area are highly affected by the topography
and are consistent with the observed PW patterns, especially
during the summer [Xoplaki et al., 2003].

[58] The spatial distribution of the monthly mean PW
difference (DPW) between July and January of the period
2001–2005 is shown in Figure 10. It is an indicator of the
spatial distribution of humidity difference between the
warm and the cold period in the study area. The topography
effect is also evident in Figure 10, since lower differences
are observed over mountainous areas. Of particular impor-
tance is the low relative DPW values which are observed
over eastern Crete. This may be explained by the action of
the Etesians (North winds blowing over the Aegean Sea
during the summer, especially in July). If the Etesians were
not blowing over this area during the summer, the air
temperature would be higher and therefore the monthly
mean PW value for July would be higher. Consequently, the
DPW would be also higher.
[59] Figure 11 shows scatter diagrams of radiosonde

derived PW versus AVHRR derived PW for January (a),
April (b), July (c), and October (d) for the whole study
period, 2001–2005. The respective RMSE were estimated
at 0.46, 0.39, 0.52, and 0.45 cm. Visual inspection of these
scatterplots and estimation of linear regressions via OLS
indicated the presence of some bias in AVHRR derived PW

Figure 9. The spatial distribution of AVHRR derived PW values estimated at each grid cell by
averaging the daily values for the whole 2001–2005 period for January (a), April (b), July (c) and
October (d). The seasonal, as well the spatial variability of PW is indicated.
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estimates. This finding indicates that the linear model in (4)
could be refined by allowing for seasonal effects. We plan to
explore this issue in further research.
[60] Figure 12 depicts a scatter diagram of radiosonde

derived PW versus AVHRR derived PW for the whole
period 2001–2005 (four months). Radiosonde derived PW
values were found to be highly correlated with their
corresponding AVHRR estimates; indeed, Pearson’s correla-
tion coefficient was found equal to 0.812. Standard OLS
estimation revealed that the intercept of the regression line
equals bOLS = 0.25 and the corresponding slope equals aOLS =
0.87. Hence the best fitting line is close to the line with zero
intercept and unit slope displayed in Figure 12, indicating the
overall absence of bias in AVHRR estimation. The respective
RMSE was estimated at 0.46 cm, which indicated a very
good agreement of estimated and observed parameters.
[61] Finally, separate OLS regressions between radio-

sonde derived PW and AVHRR derived PW were also
carried out for each year of the study period (results are
not shown for space economy). The corresponding esti-
mates for each year are very close to the values reported
above for the equation that concerns the full validation data

set. This finding supports the temporal stability of our
predictions that were based on the robust regression model.

5. Conclusions

[62] The knowledge of the spatiotemporal distribution of
PW is important for hydrological, climatological and mete-
orological applications, in evapotranspiration studies and in
biospheric and atmospheric modeling. PW is also needed to
atmospherically correct optical imagery, as well as to correct
SAR interferometric measurements. In this study the spatial
distribution of PW was extracted from AVHRR thermal
channels brightness temperature difference. The relationship
between PW and DT was calibrated by robust regression
using the MODIS derived PW and validated using radio-
sonde measurements. Radiosonde derived PW rates of
change were also used to adjust the MODIS derived PW
to the AVHRR acquisition time. The application area was
the broader area of Greece and all spatial calculations were
performed in a 5 � 5 km cell grid.
[63] The PW–DT relationship was calibrated using cloud

free cells from 15 days distributed in October 2003, January,
April, and July 2004. The two variables were highly

Figure 10. Monthly mean PW differences between the warm and the cold periods calculated by
subtracting the monthly mean value of January from the respective value of July for each grid cell for the
whole period 2001–2005.
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correlated and although the regression sample was high
(29861 pairs) the resulted equation was estimated with a
correlation coefficient of 91% by employing robust regres-
sion analysis methods. This equation was applied to daily
DT data for January, April, July and October of the five
years period 2001–2005. The PW spatial-temporal distri-
bution was derived in this way from AVHRR records and its
spatial and interannual variability was assessed. The
resulted PW values were validated using radiosonde meas-
urements and a very good agreement between radiosonde

and AVHRR derived PW values was observed (RMSE =
0.46 cm).
[64] A correspondence of the spatial patterns of MODIS

derived PW and AVHRR derived DT was observed. The
effect of topography was evident since lower PW and DT
values were observed for all seasons, over the west part of
central and northern Greece (Pindos mountain chain), over
the mountainous area of central Peloponnese, over the three
main mountain chains of the Crete island, as well as over
the mountainous areas of Turkey, Albania, Bulgaria and

Figure 11. Scatter diagrams of AVHRR derived PW (estimated) versus radiosonde derived PW
(observed) values for January (a), April (b), July (c) and October (d) of the period 2001–2005.
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Former Yugoslavian Republic of Macedonia. The PW
interannual and spatial variability were observed from the
AVHRR derived PW spatial distributions of the period
2001–2005. The summer maxima, the winter minima and
the effect of topography were evident in each cell. Mean
PW maxima of 1.60, 2.61, 3.96, and 2.50 cm for the study
area were observed for January, April, July and October,
respectively. Moreover local scale maxima were observed
over Thessaly, Central Macedonia, East Thrace, West Alba-
nia and several less extended parts of the West Greece and
west Turkey, especially in the summer.
[65] The main achievements of the present study are:
[66] . a methodology to combine MODIS and AVHRR

records for PW estimation;
[67] . a site specific PW-DT relationship which can be

used to provide consistent estimates of PW for a multiyear
database, by analyzing time series of accurately calibrated
AVHRR channels 4 and 5 radiances;
[68] . a five year spatial distribution of PW on a daily

basis (for January, April, July, and October) at 5� 5 km cells
over the study area, which can be used in several applications
sensitive to PW spatial variability as discussed above;
[69] . the use of robust regression analysis techniques to

estimate the PW-DT relationship;
[70] . the use of an extended validation data set.
[71] Future work may focus on the synergy of AVHRR,

MODIS and other sensors, such as the Spinning Enhanced
Visible and InfraRed Imager (SEVIRI) onboard MSG, to
assess the diurnal variability of PW and its modifications in

space and time. It may also focus on the improvement of the
AVHRR derived PW accuracy by taking also into account
the effect of the atmospheric path on the attenuation of
thermal infrared radiation, which is a function of the
satellite zenith angle. The accuracy of the AVHRR derived
PW could be also improved by taking into account the
geophysical parameters that mainly affect the PW, namely
the topography, the surface temperature and emissivity.
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