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a  b  s  t  r  a  c  t

The  urban  heat  island  (UHI)  phenomenon  is  mainly  caused  by  the  differences  in  the  thermal  behaviour
between  urban  and  rural  settlements  that  are  associated  with  the  thermal  properties  of  urban  materials,
urban  geometry,  air pollution,  and  the  anthropogenic  heat  released  by  the  urban  activities.  The UHI  has
a serious  impact  on  the energy  consumption  of  buildings,  increases  smog  production,  while  contributing

to  an  increasing  emission  of pollutants  from  power  plants,  including  sulfur  dioxide,  carbon  monoxide,
nitrous  oxides  and  suspended  particulates.

This study  presents  the  applicability  of  artificial  neural  networks  (ANNs)  and  learning  paradigms  for
UHI  intensity  prediction  in Athens,  Greece.  The  proposed  model  is tested  using  Elman,  Feed-Forward  and
Cascade  neural  network  architecture.  The  data  of  time,  ambient  temperature  and  global  solar  radiation
are used  to  train  and  test  the  different  models.  The  prediction  accuracy  is  analyzed  and  evaluated.
. Introduction

The urban heat island (UHI) phenomenon serves as a
rap for atmospheric pollutants, deteriorates the quality of
ife and has a socio-economic impact in the urbanised areas
Santamouris, Paraponiaris, & Mihalakakou, 2007; Santamouris,
avlou, Synnefa, Niachou, & Kolokotsa, 2007). Important research
as been accomplished over the last hundred years to quan-
ify its impact on the urban climate (Akbari, Konopacki, &
omerantz, 1999; Mihalakakou, Flokas, Santamouris, & Helmis,
000; Santamouris, 2001). Various heat island studies have been
erformed in Europe during the last 15 years (Santamouris, 2007).
rban heat island and increased urban temperatures (Livada,
antamouris, & Assimakopoulos, 2007; Livada, Santamouris,
iachou, Papanikolaou, & Mihalakakou, 2002; Mihalakakou,
antamouris, & Papanikolaou, 2004), exacerbate the cooling load
f buildings, increase the peak electricity demand for cooling and
ecrease the efficiency of air conditioners (Cartalis, Synodinou,
roedrou, Tsangrassoulis, & Santamouris, 2001; Hassid et al., 2000;
olokotroni, Giannitsaris, & Watkins, 2006; Santamouris et al.,

001). Moreover the urban agglomeration has a negative impact
n the cooling effectiveness of natural and night ventilation (Geros,
antamouris, Karatasou, Tsangrassoulis, & Papanikolaou, 2005) and

∗ Corresponding author.
E-mail address: dkolokotsa@enveng.tuc.gr (D. Kolokotsa).
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contributes to the increase of outdoor pollutants’ concentration
(Crutzen, 2004; Taha, 1994).

Consequently, the prediction of the urban heat island behaviour
has gained a significant attention. Although a number of modelling
approaches for urban heat island do exist (Mirzaei & Haghighat,
2010), the complexity of the phenomenon, the bulk of urban details
required to attain an accurate urban model and the increased cost
and computational time of the analytical modelling approaches has
led to the exploration of other prediction methods.

Artificial neural networks (ANNs) have been used in a number of
prediction studies that involve atmospheric time series data. Yi and
Prybutok (1996) predicted daily maximum ozone levels in Texas
metropolitan areas with a standard three-layer ANN model with
nine inputs and four hidden nodes and found it to be superior to
statistical methods. A three-layer ANN model with 17 inputs was
developed by Jiang et al. (2004) to predict the air pollution levels of
cities in China. Inputs to the models were not site-specific, allowing
the model to be applied to a number of locations across China. Air
temperature, wind speed, and relative humidity in Saskatchewan,
Canada were predicted for 24 h in advance by ANN models devel-
oped and applied by Maqsood, Khan, and Abraham (2004).  They
found that combining the outputs of a standard Feed-Forward ANN,
a recurrent ANN, a radial basis function network, and a Hopfield

network into a simple “winner-take-all” ensemble led to more
accurate predictions of wind speed, relative humidity, and air tem-
perature than any of the individual component networks. Ruano,
Crispim, Conceicão, and Lúcio (2006) used a multi-objective genetic

dx.doi.org/10.1016/j.scs.2011.05.001
http://www.sciencedirect.com/science/journal/22106707
http://www.elsevier.com/locate/scs
mailto:dkolokotsa@enveng.tuc.gr
dx.doi.org/10.1016/j.scs.2011.05.001
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lgorithm to develop a radial basis function ANN model for the
rediction of air temperature in a secondary school building in
ortugal. Air-conditioning control scheme simulations indicated
hat temperatures could be more consistently managed and that
ir conditioner run times could be reduced using an ANN model.
asadduq, Rehman, and Bubshait (2002) used a back propagation
NN with batch learning scheme for 24-h prediction in ambient

emperature on a coastal location in Saudi Arabia. They found that
emperature can be predicted even with only one input with good
ccuracy.

Additionally, a number of urban heat island prediction stud-
es are based in the ANN technology (Santamouris, Mihalakakou,

 Papanikolaou, 1999). A neural network architecture was devel-
ped to predict the urban heat island intensity in Athens, Greece,
uring both day and night (Mihalakakou et al., 2004) using data
or a two-year time period. Another study uses input data from

eteorological stations as well as historic measured air tempera-
ures within the city to predict the urban heat island intensity in
ondon based on neural network architecture (Kolokotroni, Davies,
roxford, Bhuiyan, & Mavrogianni, 2010).

It should be underlined here that most urban heat island NN
rediction studies require a large set of data to train the neural
etworks and predict the phenomenon in an accurate and accept-
ble manner. The present paper presents an effort to predict the
rban heat island intensity in Athens based on limited available
ata series using various neural networks architectures. The over-
ll effort is structured in three more sections. Section 2 provides
he description of the region and the experimental sites. Section

 analyses the selection and configuration of ANN while Section 4
ncludes the experimental results and discussion. Finally, Section 5
ummarises the conclusions.

. Experimental site description
The Greater Athens Area (GAA) is situated on a small peninsula
ocated on the southeastern edge of the Greek mainland (Fig. 1). It
s divided by high mountains in three main parts, which are con-

Fig. 1. The location of the 14 m
nd Society 1 (2011) 104– 115 105

nected by small openings. The central part is the Athens basin which
covers an area of 450 km2, with a population density of 8000 inhab-
itants per square kilometer, with the main axis orientated from
SSW to NNE. Athens basin is surrounded by high mountains in the
north (Parnitha, 1426 m),  in the west (Egaleo, 458 m) and in the east
(Hymettus, 1026 m and Penteli, 1107 m),  while it is open to the sea
from the south (Saronikos Gulf). The other parts of the Athens area
are the Thriassion plain west of the Athens basin and the Mesogia
plain in the east. There are only small openings through which the
Athens basin communicates with these plains as well as the rest
of Greek mainland. These openings play an important role in air
mass exchange between the Athens basin and the Thriassion and
Mesogia plains.

The city of Athens is characterised by a strong heat island effect,
mainly caused by the accelerated industrialisation and urbanisa-
tion during recent years. From previous measurements’ analysis
is found that maximum heat island intensity in the Athens centre
is almost 16 ◦C while the mean value for the major central area
of Athens reaches 12 ◦C. Also, absolute maximum temperatures in
the central area is close to 15 ◦C higher than in the suburban areas,
while absolute minimum temperatures are up to 3 ◦C higher in the
centre (Santamouris, 2001).

In a study performed by Livada et al. (2002) reporting the results
of the heat island study in Athens, it is found that near the sea, the air
temperatures are higher in the cold period due to the influence of
the sea which supports the maintenance of high air temperatures.
It is also reported that high air temperatures during the hot period
of the year or low air temperatures in the cold period is mostly
related to the synoptic weather conditions and it cannot reasonably
considered as an index for the heat island effect development.

The increase of the cooling load in Athens and the ecolog-
ical footprint of urban heat island is studied by Santamouris,
Paraponiaris, et al. (2007) and Santamouris, Pavlou, et al. (2007).

Given the actual penetration of air conditioning in the country,
the ecological footprint due to the heat island ranges 1.5–2 times
the city’s surface area. Moreover the maximum potential ecological
footprint provided that all buildings are air conditioned is almost

eteo station in the GAA.
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Table 1
The location of the 14 experimental sites.

i Municipality Latitude Longitude

1 Egaleo 37◦59′50′′ 23◦40′5′′

2 Korydalos 37◦58′45′′ 23◦38′33′′

3 Haidari 38◦0′45′′ 23◦39′35′′

4 Ag. Varbara 37◦59′22′′ 23◦39′37′′

5 Peristeri 38◦0′47′′ 23◦41′43′′

6 Kamatero 38◦3′35′′ 23◦42′50′′

7 Zefyri 38◦4′7′′ 23◦43′4′′

8 Ilioupoli 37◦55′58′′ 23◦45′29′′

9 Petroupoli 38◦2′26′′ 23◦41′16′′

10 Agii Anargyri 38◦1′34′′ 23◦43′3′′

11 Xalandri 38◦0′44′′ 23◦39′34′′

12 Ilion 38◦1′54′′ 23◦42′27′′
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13 Kaissariani 37◦58′8′′ 23◦45′41′′

14 National Observatory of Athens (reference site) 37◦58′24′′ 23◦43′5′′

10,000 ha. The cost to compensate the heat island is calculated
lose to 4.13 MD /year or 164 D per household. The additional peak
ooling electrical load to compensate the heat island is 82.4 MW.

In the present effort to predict the urban heat island effect in the
rea of Athens, a network of 14 meteorological stations has been
et up corresponding to the 13 Athens municipalities plus the ref-
rence station (Table 1). The meteorological stations are placed on
he administrative municipalities’ buildings and are all 2 m above
round, north oriented, shaded and ventilated. Each meteorological
tation contains a fully calibrated high precision data logger (Tiny
ag data loggers) that measures air temperature every 15 min.

The sensors’ characteristics are:

Reading resolution 0.02 ◦C or better.
Range −40 ◦C to +125 ◦C.
Temperature stability ±0.01 ◦C/◦C change from 25 ◦C.

In addition, other meteorological data (solar radiation, wind
elocity, etc.) are collected from the National Observatory of Athens

ocated at Thission, Athens (N′ 37◦ 58’, E′ 23◦ 43’). The specific site is
n a greenery area and is considered as the reference station of the
verall analysis although it is positioned almost in the centre of the
eninsula. The experimental period started on April 2009 in the

Fig. 2. Schematics diagram for th
nd Society 1 (2011) 104– 115

framework of BRIDGE project (www.bridge-fp7.eu). The present
analysis uses data for one-year period (from April 2009 until May
2010) targeting to minimise the need for long term historic data.

3. Application of ANN for urban heat island intensity
prediction

3.1. Data sets

The measured and collected data are used as input in order to
develop the ANN model and prediction procedure.

The input parameters for the neural network are as follows:

(i) Date to represent the yearly climatic variations (the date is con-
verted into the number of days starting from the 1st of January)
and ranges within [1,365].

(ii) Time, the time is converted into minutes of the day and ranges
within [0,1380].

iii) Ambient temperature (◦C) measured by the various experi-
mental sites described in the previous section.

(iv) Global solar radiation (W/m2) measured by the National Obser-
vatory of Athens.

Neural networks generally provide improved performance
when the data are normalised. The use of original data as input
to the neural network may  cause a convergence problem. All the
temperature and global solar radiation data sets are, therefore, nor-
malised in the range [−1,1] by dividing the difference between the
actual value x and minimum values by the difference between the
maximum xmax and minimum values xmin, i.e.

xnor = x − xmin

xmax − xmin

The main goal of normalisation, in combination with the weight
initialisation, is to allow the squashed activity function to work

at least at the beginning of the learning phase. Thus, the gradient,
which is a function of the derivative of the non-linearity, will always
be different from zero. At the end of each algorithm, the outputs are
transformed into its original data format.

e Cascade neural network.

http://www.bridge-fp7.eu/
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.2. The neural networks architecture

The prediction problem using neural network models can be
eparated into three steps or sub problems: designing the neural
etwork architecture, conducting the learning or training process,
nd testing.

.2.1. The NN architecture design
In the present study three different neural networks are chosen:

(i) The Cascade NN (Fig. 2) which consists of the input layer, the
layer of output neurons, and one or more hidden layers. The
first layer has weights coming from the inputs and each subse-
quent layer has weights coming from the input and all previous
layers. All layers have biases. The last layer is the network
output (Hedayat, Davilu, Barfrosh, & Sepanloo, 2009).

(ii) The Elman NN (Fig. 3) which can be viewed as a Feed-Forward
neural network with an additional set of inputs from the con-
text layer (Song, 2010).

iii) The Feed-Forward NN has all of the data information flows in
one direction. The neurons of one layer are connected with the
neurons of the following layer and there is no feedback (Fig. 4).

The selection of the networks’ architecture is based on various
esults presented in the literature as well as in a preliminary trial
nd error procedure for various neural networks’ types. Apart from

he three above mentioned types, the NARX, Hopfield and Learning
ector Quantization (LVQ) neural networks are also tested without
roviding any encouraging results for the specific problem.

Fig. 3. Schematics diagram for the Elman neural network.
Fig. 4. Schematics diagram for the Feed-Forward neural network.

3.2.2. The learning and training process
For each different neural network architecture the optimal

training function, transfer or activation function, hidden layers and
number of neurons are investigated. Each neural network consists
of one to three hidden layers with 20–40 neurons each, followed by
an output layer of one neuron. For all three neural networks (Cas-
cade, Elman and Feed Forward) the following training functions are
considered:

• Levenberg-Marquardt (trainlm).
• Scaled conjugate gradient (trainscg).
• BFGS quasi-Newton (trainbfg).
• Gradient descent (traingd).
• Gradient descent with momentum and adaptive learning rate

(traingdm).
• Resilient back propagation training function (traingnrp).

The tangent sigmoid function is used as transfer function (Fig. 5)
for all the NN.

Each neural network is trained using all the above training
functions for the datasets from the Koridalos station for 1-h and

24-h prediction horizon respectively. The Koridalos site is ran-
domly selected and the results are validated by the implementation
of the same procedure in the Peristeri experimental site (see
Tables 2 and 3).

Fig. 5. Tangent sigmoid function.



108 K. Gobakis et al. / Sustainable Cities and Society 1 (2011) 104– 115

Table 2
Performance comparison of difference training functions for Koridalos site.

Training function 1 h 24 h

Mean value Standard deviation MSE  Mean value Standard deviation MSE

Feed Forward
trainlm 2.220 1.601 0.621 2.513 2.274 0.955
trainscg 2.041 1.385 0.484 2.291 1.970 0.820
trainbfg 22.355 12.376 38.023 30.355 17.376 45.023
traingd 7.471 7.215 6.859 8.873 6.997 8.285
traingdm 15.643 10.772 20.319 18.323 12.033 26.518
traingnrp 10.660 7.677 11.252 7.533 6.074 6.409

Cascade
trainlm 1.965 1.483 0.423 2.153 2.681 1.070
trainscg 1.954 1.342 0.393 2.163 1.978 0.773
trainbfg 1.666 1.084 0.593 0.942 0.845 0.131
traingd 3.606 3.259 1.812 3.476 3.140 1.668
traingdm 3.042 3.032 1.230 3.593 3.799 2.303
traingnrp 2.088 1.547 0.535 2.325 2.487 1.052

Elamn
trainlm 1.137 1.192 0.342 2.530 2.357 1.026
trainscg 1.897 1.295 0.367 1.517 1.085 0.303
trainbfg 1.975 1.321 0.614 1.254 0.967 0.652
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traingd 2.560 1.723 

traingdm 2.443 1.445 

traingnrp 3.215 1.687 

The best prediction performance is achieved by (see
ables 2 and 3):

The Cascade neural network using the BFGS quasi-Newton as
training function.
The Elman neural network with the Levenberg-Marquardt as
training function.
Feed-Forward neural network with scaled conjugate gradient as
training function.

.2.3. The testing process
In this step the results from the three neural networks, for the

arious data sets are compared in order to examine the prediction
ccuracy. We  choose the optimum results for each neural network.

igs. 6 and 7 present the measured versus the predicted values for
oridalos site for 1-h and 24-h prediction horizon respectively. The
est fit of the measured to the observed data is achieved by the
lman followed by the Cascade and the Feed-Forward architecture.

able 3
erformance comparison of difference training function for Peristeri site.

Training function 1 h 

Mean value Standard deviation 

Feed Forward
trainlm 3.606 3.259 

trainscg 3.174 2.457 

trainbfg 7.707 5.638 

traingd 9.201 7.230 1
traingdm 6.980 6.779 

traingnrp 6.890 6.391 

Cascade
trainlm 2.930 2.269 

trainscg 2.805 2.155 

trainbfg 2.890 2.281 

traingd 6.317 7.253 

traingdm 6.831 5.684 

traingnrp 2.994 2.282 

Elamn
trainlm 2.234 1.351 

trainscg 3.299 2.041 

trainbfg 3.754 2.545 

traingd 2.886 1.920 

traingdm 3.315 5.818 

traingnrp 3.125 2.958 
0.780 1.556 1.294 0.314
0.574 1.383 1.068 0.235
0.691 1.469 1.325 0.325

The percentage error and the mean square error are utilised to
calculate the difference between the measured and the predicted
temperature values.

Precent Error = Experiment − Theoretical value
Theoretical value

× 100%

The mean value (MV) and the standard deviation (SD) of the
percentage error for each neural network architecture and for 1-
h prediction horizon are 1.8 ± 1.0% for Elman, 2.8 ± 2.2% for Feed
Forward and 2.4 ± 1.5% for Cascade. The same results apply for the
24-h prediction horizon as tabulated in Table 2. The mean squared
error (MSE) of the three neural networks and for Koridalos site is
for Feed-Forward 1.12, for Cascade 0.65 and for Elman 0.35.

The above results show that the most suitable NN architec-
ture for the urban heat island intensity prediction is the Elman

type using Levenberg-Marquardt as transfer function. The above
results are verified by following the same procedure for another
site, placed in a quite different location, i.e. the Peristeri site. The
results of the analysis performed in Peristeri site are tabulated in

24 h

MSE  Mean value Standard deviation MSE

1.812 4.128 5.655 4.348
1.407 3.087 3.087 2.253
9.454 14.607 10.348 23.870
2.596 7.677 5.402 6.144
8.493 10.595 8.019 13.464
7.157 11.877 10.265 14.669

1.166 3.691 3.908 2.745
1.043 2.764 2.682 1.454
1.157 2.912 2.636 1.411
6.964 5.172 5.109 3.599
5.880 4.689 4.776 3.540
1.233 3.381 4.217 2.475

0.911 1.142 0.736 0.151
1.160 1.268 0.923 0.173
2.840 3.412 1.785 0.985
0.520 1.835 1.575 0.571
3.122 3.202 7.685 3.652
2.958 3.587 2.218 2.504
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Fig. 6. Comparison between the three different ANN for 1-h prediction horizon.
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Fig. 7. Comparison between diffe

able 3 and verify that the optimum neural network is the Elman.
he specific network architecture is then used for predicting the
rban heat island intensity in all sites.

. Results and discussion
Training and verification of the ANN is performed using the data
ollected during the period from 06/04/2009 to 07/09/2009 for each
xperimental site. Therefore the training and verification period is
hortened to five months.
NN for 24-h prediction horizon.

The data are fed into the ANN as blocks of 24 values correspond-
ing to each hour of the day. The neural network has a training period
of 40–60 days. The remaining data are used to verify the quality of
network and adaptation of the neural network to the new data.

Figs. 8 and 9 show the measured and predicted temperatures
of 5 different locations (i.e. Ilion, Zefyri, Petoupoli, Aegaleo and
Agii Anargyri) and for two different dates 19–20/06/2009 and

05–06/07/2009 respectively. As we  can see in Fig. 8, the diurnal
fluctuation of temperatures is very smooth and is followed by the
1-h and 24-h Elman prediction algorithms quite accurately. Fur-
thermore, although the daily temperature fluctuations depicted in
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Fig. 8. Measured–predicted temperatures for 19–20/06/2009.

Fig. 9. Measured–predicted temperatures for 05–06/07/2009.
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Fig. 10. Monthly comparison for measured–

ig. 9 are not as smooth and predictable, the Elman NN manages to
ollow the measured data most of the time.
Another significant aspect of the proposed neural network
rchitecture that should be examined is the alterations in predic-
ion accuracy due to seasonal variations and the necessity to retrain

Fig. 11. Monthly comparison for measured–predicte
cted temperatures of Haidati meteo station.

the network when the season changes. In Figs. 10 and 11 the mea-
sured and predicted temperatures are depicted for Haidari and Agia

Barbara experimental sites. Although the prediction accuracy is not
always the highest possible, especially for the 48-h prediction hori-
zon, the overall prediction accuracy does not change significantly

d temperatures of Agia Barbara meteo station.
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Fig. 12. Response of th
ith the seasonal changes. The seasonal changes of the standard
eviation between the measured and predicted values for Haidari
nd Agia Barbara sites are tabulated in Table 4. Another significant
spect is the methodology’s response to different weather condi-

Fig. 13. The UHI in Athens
 to weather changes.
tions or during weather changes. For this reason the ANN’s response
is studied for two  experimental sites, i.e. Koridalos and Haidari as
well as for day to day temperature changes (Fig. 12). As we can
see in the specific figure, although outdoor temperature is consid-

 during 01/07/2009.
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Fig. 14. The UHI in Athens during 18/06/2009.

Fig. 15. The UHI measured versus UHI 24 h predicted for the Agia Barbara site.

Table  4
Seasonal variations of standard deviation between measured and predicted temperatures for Agia Barbara and Haidari sites.

Prediction horizon Agia Barbara Haidari

1 h 24 h 48 h 1 24 48

12/5/2009–31/6/2009 0.5516 0.9301 0.7581 0.5532 1.4003 1.0013
1/6/2009–30/6/2009 0.4392 0.8087 0.733 1.0013 1.0267 0.5104
1/7/2009–31/7/2009 0.7787 0.793 1.2449 0.5767 0.8057 0.9998
1/8/2009–31/8/2009 0.4127 0.5587 0.9892 0.5326 0.5731 1.0996
1/9/2009–6/9/2009 0.4682 0.5061 0.93 0.7029 0.7274 1.1727
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Fig. 16. The UHI measured versus UHI 24 h predicted for the Egaleo site.
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Fig. 17. The UHI measured versus 

rably decreased from 19/6/2009 to 20/6/2009, and also increased
rom 23/8/2009 to 24/8/2009, the ANN follows this change in a
uccessful manner especially for the 24-h prediction horizon.

Moreover isothermal images are developed to imprint the UHI
ntensity over Athens. The mapping of the region is performed is
sing Google Earth while the isothermal lines are added by Surfer

 software. For each day that the UHI over Athens is analyzed, a set
f four images is constructed to visualize the ANN prediction:

The first image maps the isotherms over Athens using the mea-
sured data of the specific day and time.
The second image represents the isotherms of Athens urban heat
island based on the 1-h prediction results for the specific day and
time.
The third image maps the isotherms of Athens urban heat island
based on the 24-h prediction results for the specific day and time.
The fourth image plots the isotherms of Athens urban heat island

based on the 48-h prediction results for the specific day and time.

Indicatively the isothermal maps of the UHI intensity over
thens for two days (i.e. 1/7/2009 and 18/6/2009) are illustrated
4 h predicted for the Halandri site.

in Figs. 13 and 14.  The prediction of the maximum temperatures
for the 1/7/2009 has a maximum error of 1.6 ◦C and 1.9 ◦C for the
24-h and 48-h prediction horizon respectively. Moreover the visu-
alization of UHI intensity prediction shows that the isotherms of the
24-h prediction are very close to the actual measured ones while the
48-h prediction has a slightly different picture. Therefore the spe-
cific NN architecture and methodology followed is quite accurate
for the 24-h prediction horizon.

The urban heat island intensity is then calculated versus the ref-
erence station, i.e. National Observatory of Athens. The predicted
versus the measured urban heat island intensity for three sites
(i.e. Agia Barbara, Egaleo and Halandri) and for 24-h prediction are
depicted in Figs. 15–17 respectively. The figures show a satisfac-
tory fitting with a RMSE less than 0.3 and R2 to be close or higher
than 0.9 for all three sites which represents a good prediction of
the urban heat island intensity.
5. Conclusion and future prospects

Important heat island studies have been performed in Europe
during the last decades showing that the deep understanding of the
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henomenon plays an important role in fighting its consequences
o the climate change. Advanced artificial intelligence techniques
uch as neural networks offer on the other hand a valuable tool to
e used for the prediction of the specific phenomenon. The neural
etworks prediction accuracy is mainly based on the quality and
uantity of the available data.

The aim of the present paper was to investigate the feasibility
f predicting the urban heat island phenomenon using a limited
ata series. The Athens case study was used to demonstrate the
easibility and accuracy of the overall approach.

The methodology presented in the present paper showed that
he urban heat island intensity can be predicted quite accurately
or at least a 24-h prediction horizon using a limited set of data.

Therefore the NN prediction methodology can be an important
ool for peak energy load predictions during heat waves and hot
ummer days contributing to the demand and supply energy man-
gement.

cknowledgement

The research leading to these results has received funding
rom the European Community’s Seventh Framework Programme
FP7/2007-2013) under grant agreement n◦ 211345 (BRIDGE
roject).

eferences

kbari, H., Konopacki, S., & Pomerantz, M.  (1999). Cooling energy savings potential
of  reflective roofs for residential and commercial buildings in the United States.
Energy,  24,  391–407.

artalis, C., Synodinou, A., Proedrou, M.,  Tsangrassoulis, A., & Santamouris, M.  (2001).
Modifications in Energy Demand in urban areas as a result of climate changes:
An  assessment for the southeast Mediterranean region. Energy Conversion and
Management,  42(14), 1647–1656.

rutzen, P. (2004). New directions: The growing urban heat and pollution
‘island’ effect—Impact on chemistry and climate. Atmospheric Environment, 38,
3539–3540.

eros,  V., Santamouris, M.,  Karatasou, S., Tsangrassoulis, A., & Papanikolaou, N.
(2005). On the cooling potential of night ventilation techniques in the urban
environment. Energy and Buildings, 37(3), 243–257.

assid, S., Santamouris, M., Papanikolaou, N., Linardi, A., Klitsikas, N., Georgakis, C.,

et  al. (2000). The effect of the Athens heat island on air conditioning load. Energy
and Buildings, 32,  131–141.

edayat, A., Davilu, H., Barfrosh, A. A., & Sepanloo, K. (2009). Estimation of research
reactor core parameters using cascade feed forward artificial neural networks.
Progress in Nuclear Energy,  51(6), 709–718.
nd Society 1 (2011) 104– 115 115

Jiang, D., Zhang, Y., Hu, X., Zeng, Y., Tan, J., & Shao, D. (2004). Progress in developing
an  ANN model for air pollution index forecast. Atmospheric Environment, 38(40
SPEC.ISS.), 7055–7064.

Kolokotroni, M., Davies, M.,  Croxford, B., Bhuiyan, S., & Mavrogianni, A. (2010). A
validated methodology for the prediction of heating and cooling energy demand
for  buildings within the urban heat island: Case-study of London. Solar Energy,
84(12),  2246–2255.

Kolokotroni, M., Giannitsaris, I., & Watkins, R. (2006). The effect of the London urban
heat island on building summer cooling demand and night ventilation strategies.
Solar Energy,  80(4), 383e92.

Livada, I., Santamouris, M.,  & Assimakopoulos, M. N. (2007). On the variability of
summer air temperature during the last 28 years in Athens. Journal of Geophysical
Research,  112, D12103.

Livada, I., Santamouris, M.,  Niachou, K., Papanikolaou, N., & Mihalakakou, G. (2002).
Determination of places in the great Athens area where the heat island effect is
observed. Theoretical and Applied Climatology, 71(3–4), 219–230.

Maqsood, I., Khan, M.  R., & Abraham, A. (2004). An ensemble of neural networks for
weather forecasting. Neural Computer Applications, 13,  112–122.

Mihalakakou, M.,  Santamouris, N., & Papanikolaou, C. (2004). Cartalis simulation of
the  urban heat island phenomenon in Mediterranean climates. Pure and Applied
Geophysics,  161, 429–451.

Mihalakakou, P., Flokas, H., Santamouris, M., & Helmis, C. (2000). Application of
neural networks to the simulation of the heat island over Athens Greece using
synoptic types as a predictor. Journal of Applied Meteorology, 41,  519–527.

Mirzaei, P. A., & Haghighat, F. (2010). Approaches to study urban heat
island—Abilities and limitations. Building and Environment, 45(10), 2192–2201.

Ruano, A. E., Crispim, E. M.,  Conceicão, E. Z. E., & Lúcio, M.  M.  J. R. (2006). Prediction
of  building’s temperature using neural networks models. Energy and Buildings,
38,  682–694.

Santamouris, M.,  Mihalakakou, G., Papanikolaou, N., & Assimakopoulos, D. N. (1999).
A  neural network approach for modelling the heat island phenomenon in urban
areas during the summer period. Geophysics Research Letters,  26(3), 337–340.

Santamouris, M.  (2001). Energy and Climate in the Urban Built Environment. London:
James and James Science Publishers.

Santamouris, M.  (2007). Heat island research in Europe: The state of the art. Advances
in  Building Energy Research, 1, 123–150.

Santamouris, M.,  Paraponiaris, K., & Mihalakakou, G. (2007). Estimating the ecolog-
ical footprint of the heat island effect over Athens, Greece. Climate Change, 80,
265–276.

Santamouris, M., Pavlou, K., Synnefa, A., Niachou, K., & Kolokotsa, D.  (2007). Recent
progress on passive cooling techniques advanced technological developments
to  improve survivability levels in low-income households. Energy and Buildings,
39,  859–866.

Song, Q. (2010). On the weight convergence of Elman networks. IEEE Transactions
on  Neural Networks, 21(3), 463–480.

Taha, H. (1994). Meteorological and photochemical simulations of the South Coast
Air  Basin. In H. Taha (Ed.), Analysis of energy efficiency of air quality in the south
coast air basin—Phase II, LBL-35728 (pp. 161–218). Lawrence Berkeley Laboratory.

Tasadduq, I., Rehman, S., & Bubshait, K. (2002). Application of neural networks for

the  prediction of hourly mean surface temperatures in Saudi Arabia. Renewable
Energy,  36,  545–554.

Yi, J., & Prybutok, V. R. (1996). A neural network model forecasting for prediction of
daily maximum ozone concentration in an industrialized urban area. Environ-
mental Pollution, 92(3), 349–357.


	Development of a model for urban heat island prediction using neural network techniques
	1 Introduction
	2 Experimental site description
	3 Application of ANN for urban heat island intensity prediction
	3.1 Data sets
	3.2 The neural networks architecture
	3.2.1 The NN architecture design
	3.2.2 The learning and training process
	3.2.3 The testing process


	4 Results and discussion
	5 Conclusion and future prospects
	Acknowledgement
	References


